Part Number Hot Search : 
MN101CP 67BZI M3H12FAD SMPD5100 BY714 BD247 JE3055 C1210
Product Description
Full Text Search
 

To Download MAX4190 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  general description the max4188/max4189/MAX4190 are low-power, current-feedback video amplifiers featuring fast dis- able/enable times and low switching transients. the triple max4188 and the single MAX4190 are optimized for applications with closed-loop gains of +2v/v (6db) or greater and provide a -3db bandwidth of 200mhz and 185mhz, respectively. the triple max4189 is opti- mized for closed-loop applications with gains of +1v/v (0db) or greater and provides a 250mhz -3db band- width. these amplifiers feature 0.1db gain flatness up to 80mhz with differential gain and phase errors of 0.03% and 0.05? these features make the max4188 family ideal for video applications. the max4188/max4189/MAX4190 operate from a +5v single supply or from ?.25v to ?.5v dual supplies. these amplifiers consume only 1.5ma per amplifier and are capable of delivering ?5ma of output current, making them ideal for portable and battery-powered equipment. the max4188/max4189/m ax4190 have a high-speed disable/enable mode that isolates the inputs, places the outputs in a high-impedance state, and reduces the supply current to 450? per amplifier. each amplifier can be disabled independently. high off isolation, low switching transient, and fast enable/disable times (120ns/35ns) allow these amplifiers to be used in a wide range of multiplexer applications. a settling time of 22ns to 0.1%, a slew rate of up to 350v/?, and low distortion make these devices useful in many general- purpose, high-speed applications. the max4188/max4189 are available in a tiny 16-pin qsop package, and the MAX4190 is available in a space-saving 8-pin ?ax package. applications high-definition surveillance video high-speed switching/multiplexing portable/battery-powered video/multimedia systems high-speed analog-to-digital buffers medical imaging high-speed signal processing professional cameras ccd imaging systems rgb distribution amplifiers features ? low supply current: 1.5ma per amplifier ? fast enable/disable times: 120ns/35ns ? very low switching transient: 45mv p-p ? high speed 200mhz -3db small-signal bandwidth (max4188, a vcl +2) 250mhz -3db small-signal bandwidth (max4189, a vcl +1) 185mhz -3db small-signal bandwidth (MAX4190, a vcl +2) ? high slew rate 350v/ s (max4188, a vcl +2) 175v/ s (max4189, a vcl +1) ? excellent video specifications 85mhz -0.1db gain flatness (MAX4190) 30mhz -0.1db gain flatness (max4189) differential gain/phase errors 0.03%/0.05 (max4188) ? low-power disable mode inputs isolated, outputs placed in high-z supply current reduced to 450 a per amplifier ? fast settling time of 22ns to 0.1% ? low distortion 70db sfdr (f c = 5mhz, v o = 2v p-p , max4188) ? available in space-saving packages 16-pin qsop (max4188/max4189) 8-pin max (MAX4190) max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable ________________________________________________________________ maxim integrated products 1 19-1369; rev 1; 2/07 ordering information continued at end of data sheet. ordering information pin configuration appears at end of data sheet. 8-pin ?ax/so 1 a v +2v/v MAX4190 14-pin so, 16-pin qsop 3 a v +1v/v max4189 14-pin so, 16-pin qsop 3 a v +2v/v max4188 pin-package amplifiers per pkg. optimized for: part selector guide for pricing, delivery, and ordering information, please contact maxim/dallas direct! at 1-888-629-4642, or visit maxim? website at www.maxim-ic.com. ?ax is a registered trademark of maxim integrated products, inc. part temp range pin- package pkg code max4188 esd+ -40? to +85? 14 so s14-1 max4188eee+ -40? to +85? 16 qsop e16-1 + denotes lead-free package. evaluation kit available
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable 2 _______________________________________________________________________________________ absolute maximum ratings dc electrical characteristics?dual supplies (v cc = +5v; v ee = -5v; in+ = 0v; disable_ 3.2v; max4188: a v = +2v/v, r f = r g = 910 ? for r l = 1k ? and r f = r g = 560 ? for r l = 150 ? ; max4189: a v = +1v/v, r f = 1600 ? for r l = 1k ? and r f = 1100 ? for r l = 150 ? ; MAX4190: a v = +2v/v, r f = r g = 1300 ? for r l = 1k ? , r f = r g = 680 ? for r l = 150 ? ; t a = t min to t max , unless otherwise noted. typical values are specified at t a = +25?.) stresses beyond those listed under ?bsolute maximum ratings?may cause permanent damage to the device. these are stress rating s only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specificatio ns is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. supply voltage (v cc to v ee )................................................+12v in_+, in_-, disable_ voltage .........(v ee - 0.3v) to (v cc + 0.3v) differential input voltage (in_+ to in_-)..............................?.5v maximum current into in_+ or in_-..................................?0ma output short-circuit current duration........................continuous continuous power dissipation (t a = +70?) 8-pin so (derate 5.88mw/? above +70?)...............471mw 8-pin ?ax (derate 4.1mw/? above +70?) ............330mw 14-pin so (derate 8.3mw/? above +70?) ..................667mw 16-pin qsop (derate 8.3mw/? above +70?) ............... 667mw operating temperature range............................-40c to +85? storage temperature range .............................-65c to +150? lead temperature (soldering, 10s) .................................+300? symbol conditions units operating supply voltage inferred from psrr tests v input offset voltage v os v cm = 0v (note 1) ? ? mv input offset voltage tempco tc vos ?/? input offset voltage matching mv input bias current (positive input) i b+ ? input bias current (negative input) i b- ? input resistance (positive input) r in+ -3.1v v cm 3.1v, ? v in + - v in - ? 1v k ? input resistance (negative input) r in- ? input capacitance (positive input) c in pf common-mode rejection ratio cmrr -3.1v v cm 3.1v db open-loop transresistance t r -3.1v v out 3.1v, r l = 1k ? -2.8v v out 2.8v, r l = 150 ? m ? output-voltage swing v sw r l = 1k ? v r l = 150 ? output current i out r l = 30 ? ma output short-circuit current i sc ma output resistance r out ? disabled output leakage current i out(off) disable_ v il , v out ?.5v (note 2) ? disabled output capacitance c out(off) disable_ v il , v out ?.5v pf disable low threshold v il (note 3) v disable high threshold v ih (note 3) v min typ max ?.25 ?.5 ?0 v cc - 3 ? ? ?0 ? ?2 100 350 300 2.5 56 68 v cc - 1.8 17 0.3 2 ?.5 ?.0 ?.0 ?.3 ?0 55 ?0 0.2 ?.8 ? 5 parameter disable input current i in v ee disable_ v cc 0.1 2 ? power-supply rejection ratio (v cc ) psrr+ v ee = -5v, v cc = 4.5v to 5.5v 60 75 db quiescent supply current (per amplifier) i s r l = open 1.5 1.85 ma disabled supply current (per amplifier) i s(off) disable_ v il , r l = open 0.45 0.65 ma power-supply rejection ratio (v ee ) psrr- v cc = 5v, v ee = -4.5v to -5.5v 60 73 db input voltage range v cm guaranteed by cmrr test ?.1 ?.4 v
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable _______________________________________________________________________________________ 3 dc electrical characteristics?single supply (v cc = +5v; v ee = 0v; in+ = 2.5v; disable _ 3.2v; r l to v cc / 2; max4188: a v = +2v/v, r f = r g = 1.1k ? for r l = 1k ? and r f = r g = 620 ? for r l = 150 ? ; max4189: a v = +1v/v, r f = 1500 ? for r l = 1k ? and r f = 1600 ? for r l = 150 ? ; MAX4190: a v = +2v/v, r f = r g = 1300 ? for r l = 1k ? , r f = r g = 680 ? for r l = 150 ? ; t a = t min to t max , unless otherwise noted. typical values are speci- fied at t a = +25?.) r l = 30 ? r l = open r l = 150 ? r l = 1k ? ma 1.45v v out 3.55v, r l = 150 ? 1.5 1.85 1.3v v out 3.7v, r l = 1k ? 1.5v v cm 3.5v 1.6v v cm 3.4v, ? v in+ -v in- ? 1v v cm = 2.5v (note 1) guaranteed by cmrr test i s quiescent supply current (per amplifier) disable _ v il , r l = open inferred from psrr tests conditions ? 0.2 r out output resistance ma ?0 i sc output short-circuit current ma ?6 28 i out output current v 1.4 to 1.15 to 3.6 3.85 v sw ma 1.2 to 0.9 to 3.8 4.1 output-voltage swing m ? 0.2 1.0 t r open-loop transresistance 1.0 6.5 0.45 0.65 db 48 65 cmrr common-mode rejection ratio pf 2.5 c in input capacitance (positive input) ? 300 r in- input resistance (negative input) k ? 100 350 r in+ input resistance (positive input) ? ? ?2 i b- input bias current (negative input) ? ? ?0 i b+ input bias current (positive input) i s(off) disabled supply current (per amplifier) mv ? input offset voltage matching ?/? ?0 tc vos input offset voltage tempco mv ?.5 ?.0 v os input offset voltage v 1.6 to 1.3 to 3.4 3.7 v cm input voltage range v 4.5 5.5 operating supply voltage units min typ max symbol parameter disable _ v il , 1.2v v out 3.8v disable _ v il , 1.2v v out 3.8v (note 2) pf 5 c out(off) disabled output capacitance ? 0.8 ? i out(off) disabled output leakage current (note 3) (note 3) v v cc - 1.8 v ih disable high threshold v v cc - 3 v il disable low threshold v cc = 4.5v to 5.5v 0v disable _ v cc db 60 75 psrr+ power-supply rejection ratio (v cc ) ? 0.1 2 i in disable input current
v/? max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable 4 _______________________________________________________________________________________ ac electrical characteristics?dual supplies (max4188) (v cc = +5v, v ee = -5v, v in = 0v, disable _ 3v, a v = +2v/v, r f = r g = 910 ? for r l = 1k ? or r f = r g = 560 ? for r l = 150 ? ; t a = +25?, unless otherwise noted.) positive input negative input ntsc r l = 1k ? f = 10khz ntsc r l = 150 ? pa/ hz r l = 1k ? f c = 5mhz, v out = 2v p-p f c = 5mhz, v out = 2v p-p r l = 1k ? v out = 4v step i n f c = 5mhz, v out = 2v p-p v out = 2v p-p r l = 150 ? r l = 1k ? r l = 150 ? r l = 1k ? r l = 150 ? v out = 4v step conditions r l = 1k ? r l = 150 ? % 0.04 dg differential gain error 0.03 r l = 150 ? r l = 1k ? degrees 0.32 dp differential phase error 0.05 r l = 150 ? r l = 1k ? dbc -56 third harmonic distortion -73 r l = 150 ? r l = 1k ? dbc -66 second harmonic distortion -70 r l = 150 ? input noise-current density db 56 sfdr spurious-free dynamic range 70 ns 12 rise/fall time 0.25 4 mhz 160 bw -3db 200 small-signal -3db bandwidth 10 ns 22 t s settling time to 0.1% 350 mhz 100 bw ls large-signal -3db bandwidth db 0.1 peaking 60 mhz 80 bw 0.1db bandwidth for 0.1db flatness 100 units min typ max symbol parameter f = 10mhz f = 10khz ? 4 z out output impedance nv/ hz 2 e n input noise-voltage density f = 10mhz, input referred f = 10mhz, input referred db -65 all hostile off-isolation db -55 crosstalk delay from disable to 90% of v out , v in = 0.5v ns 120 t on amplifier enable time mhz 100 gain matching to 0.1db positive transient delay from disable to 10% of v out , v in = 0.5v 30 ns 35 t off amplifier disable time negative transient mv 15 disable/enable switching transient 5 rise time fall time v out = 4v step, r l = 150 ? v/? 280 sr slew rate positive slew negative slew
v/? max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable _______________________________________________________________________________________ 5 positive input negative input ntsc r l = 1k ? f = 10khz ntsc r l = 150 ? pa/ hz r l = 1k ? f c = 5mhz, v out = 2v p-p 5 f c = 5mhz, v out = 2v p-p r l = 1k ? v out = 4v step i n f c = 5mhz, v out = 2v p-p v out = 2v p-p r l = 150 ? r l = 1k ? r l = 150 ? r l = 1k ? r l = 150 ? v out = 4v step conditions r l = 1k ? r l = 150 ? % 0.18 dg differential gain error 0.07 r l = 150 ? r l = 1k ? degrees 0.66 dp differential phase error 0.02 r l = 150 ? r l = 1k ? dbc -51 third harmonic distortion -70 r l = 150 ? r l = 1k ? dbc -63 second harmonic distortion -65 r l = 150 ? input noise-current density db 51 sfdr spurious-free dynamic range 65 ns 22 rise/fall time 1.4 4 mhz 210 bw -3db 250 small-signal -3db bandwidth 20 ns 28 t s settling time to 0.1% 175 mhz 55 bw ls large-signal -3db bandwidth db 0.15 peaking 7 mhz 30 bw 0.1db bandwidth for 0.1db flatness 60 units min typ max symbol parameter f = 10mhz f = 10khz ? 4 z out output impedance nv/ hz 2 e n input noise-voltage density f = 10mhz, input referred f = 10mhz, input referred db -55 all hostile off-isolation db -57 crosstalk delay from disable to 90% of v out , v in = 0.5v ns 120 t on amplifier enable time mhz 24 gain matching to 0.1db positive transient delay from disable to 10% of v out , v in = 0.5v 70 ns 40 t off amplifier disable time negative transient mv 110 disable/enable switching transient ac electrical characteristics?dual supplies (max4189) (v cc = +5v, v ee = -5v, v in = 0v, disable_ 3v, a v = +1v/v, r f = 1600 ? for r l = 1k ? and r f = 1100 ? for r l = 150 ? ; t a = +25?, unless otherwise noted.) v out = 4v step, r l = 150 ? v/? 150 sr slew rate positive slew negative slew rise time fall time
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable 6 _______________________________________________________________________________________ r l = 1k ? f = 10khz ntsc r l = 150 ? nv/ hz r l = 1k ? f c = 5mhz, v o = 2v p-p f c = 5mhz, v o = 2v p-p r l = 1k ? v o = 2v step e n f c = 5mhz, v o = 2v p-p rise time v o = 2v p-p r l = 150 ? r l = 1k ? r l = 150 ? v o = 4v step, r l = 150 ? conditions v o = 4v step, r l = 150 ? v/? 270 sr slew rate positive slew r l = 1k ? r l = 150 ? negative slew r l = 150 ? r l = 1k ? degrees 0.07 dg differential gain error fall time 0.03 r l = 150 ? r l = 1k ? dbc -61 third harmonic distortion -73 r l = 150 ? dbc -55 second harmonic distortion -65 input noise-voltage density db 55 spurious-free dynamic range 61 ns 12 t r rise/fall time 0.1 2 mhz 150 bw ss 185 small-signal -3db bandwidth 10 ns 22 t s settling time to 0.1% 340 mhz 95 bw ls large-signal -3db bandwidth db 0.1 peaking 85 mhz 75 bw ls bandwidth for 0.1db flatness 95 units min typ max symbol parameter f = 10mhz f = 10khz ? 4 z out output impedance 4 input noise-current density f = 10mhz, input referred db -60 all hostile off-isolation positive transient 30 ns 120 t on turn-on time from disable negative transient mv 15 bw ls disable/enable switching transient r l = 1k ? r l = 150k ? t f ntsc degrees 0.45 dp differential phase error 0.06 r l = 1k ? r l = 150 ? pa/ hz 5 positive input negative input ac & dynamic performance?dual supplies (MAX4190) (v cc = +5v, v ee = -5v, v in = 0v, a v = +2v/v; r f = r g = 1300 ? for r l = 1k ? and r f = r g = 680 ? for r l = 150 ? , t a = +25?, unless otherwise noted.) ns 35 t off turn-off time from disable
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable _______________________________________________________________________________________ 7 v out = 2v step ac electrical characteristics?single supply (max4188) (v cc = +5v, v ee = 0v, v in = 2.5v, disable_ 3v, r l to v cc / 2, a v = +2v/v, r f = r g = 1.1k ? for r l = 1k ? to v cc / 2 and r f = r g = 620 ? for r l = 150 ? ; t a = +25?, unless otherwise noted.) positive input negative input ntsc r l = 1k ? f = 10khz ntsc r l = 150 ? pa/ hz r l = 1k ? f c = 5mhz, v out = 2v p-p 5 f c = 5mhz, v out = 2v p-p r l = 1k ? v out = 2v step i n f c = 5mhz, v out = 2v p-p v out = 2v p-p r l = 150 ? r l = 1k ? r l = 150 ? r l = 1k ? r l = 150 ? v out = 2v step conditions r l = 1k ? r l = 150 ? % 0.05 dg differential gain error 0.02 r l = 150 ? r l = 1k ? degrees 0.34 dp differential phase error 0.06 r l = 150 ? r l = 1k ? dbc -56 third harmonic distortion -66 r l = 150 ? r l = 1k ? dbc -59 second harmonic distortion -76 r l = 150 ? input noise-current density db 56 sfdr spurious-free dynamic range 66 ns 9 rise/fall time 0.1 4 mhz 145 bw -3db 185 small-signal -3db bandwidth 8 ns 20 t s settling time to 0.1% v/? 300 mhz 80 bw ls large-signal -3db bandwidth db 0.1 peaking 110 mhz 65 bw 0.1db bandwidth for 0.1db flatness 80 units min typ max symbol parameter f = 10mhz f = 10khz ? 4 z out output impedance nv/ hz 2 e n input noise-voltage density f = 10mhz, input referred f = 10mhz, input referred db -65 all hostile off isolation db -55 crosstalk delay from disable to 90% of v out , v in = 3v ns 120 t on amplifier enable time mhz 40 gain matching to 0.1db positive transient delay from disable to 10% of v out , v in = 3v 30 ns 35 t off amplifier disable time negative transient mv 15 disable/enable switching transient rise time fall time v out = 2v step, r l = 150 ? v/? 230 sr slew rate positive slew negative slew
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable 8 _______________________________________________________________________________________ ac electrical characteristics?single supply (max4189) (v cc = +5v, v ee = 0v, v in = 2.5v, disable _ 3v, r l to v cc / 2, a v = +1v/v, r f = 1500 ? for r l = 1k ? and r f = 1600 ? for r l = 150 ? ; t a = +25?, unless otherwise noted.) positive input negative input ntsc r l = 1k ? f = 10khz ntsc r l = 150 ? pa/ hz r l = 1k ? f c = 5mhz, v out = 2v p-p 5 f c = 5mhz, v out = 2v p-p r l = 1k ? i n f c = 5mhz, v out = 2v p-p v out = 2v p-p r l = 150 ? r l = 1k ? r l = 150 ? r l = 1k ? r l = 150 ? v out = 2v step conditions r l = 1k ? r l = 150 ? % 0.17 dg differential gain error 0.06 r l = 150 ? r l = 1k ? degrees 0.66 dp differential phase error 0.04 r l = 150 ? r l = 1k ? dbc -47 third harmonic distortion -57 r l = 150 ? r l = 1k ? dbc -54 second harmonic distortion -58 r l = 150 ? input noise-current density db 47 sfdr spurious-free dynamic range 57 ns 15 rise/fall time 1.4 4 mhz 190 bw -3db 230 small-signal -3db bandwidth 12 ns 25 t s settling time to 0.1% 160 mhz 45 bw ls large-signal -3db bandwidth db 0.15 peaking 7 mhz 40 bw 0.1db bandwidth for 0.1db flatness 50 units min typ max symbol parameter f = 10mhz f = 10khz ? 4 z out output impedance nv/ hz 2 e n input noise-voltage density f = 10mhz, input referred f = 10mhz, input referred db -55 all hostile off-isolation db -57 crosstalk delay from disable to 90% of v out , v in = 3v ns 120 t on amplifier enable time mhz 25 gain matching to 0.1db positive transient delay from disable to 10% of v out , v in = 3v 70 ns 40 t off amplifier disable time negative transient mv 110 disable/enable switching transient note 1: input offset voltage does not include the effect of i bias flowing through r f /r g . note 2: does not include current through external feedback network. note 3: over operating supply-voltage range. positive slew v out = 2v step v out = 2v step, r l = 150 ? negative slew v/? 135 sr slew rate rise time fall time
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable _______________________________________________________________________________________ 9 r l = 1k ? ntsc r l = 150 ? r l = 1k ? f c = 5mhz, v o = 2v p-p f c = 5mhz, v o = 2v p-p r l = 1k ? rise time f c = 5mhz, v o = 2v p-p fall time v o = 2v p-p r l = 150 ? r l = 1k ? r l = 150 ? r l = 1k ? r l = 150 ? v o = 2v step, r l = 150 ? conditions positive slew v o = 2v step v o = 2v step, r l = 150 ? negative slew v/? 220 r l = 1k ? r l = 150 ? sr r l = 150 ? r l = 1k ? % 0.08 dg differential gain error slew rate 0.02 r l = 150 ? r l = 1k ? dbc -60 third harmonic distortion -68 r l = 150 ? dbc -55 second harmonic distortion -59 db 55 spurious-free dynamic range 59 ns 9 t r t f rise/fall time 0.1 mhz 135 bw -3db 165 small-signal -3db bandwidth 8 ns 20 t s settling time to 0.1% 290 mhz 75 bw ls large-signal -3db bandwidth db 0.1 peaking 70 mhz 65 bw 0.1db bandwidth for 0.1db flatness 75 units min typ max symbol parameter f = 10mhz ? 4 z out output impedance f = 10khz input noise-voltage density f = 10mhz, input referred, r l = 150 ? db -60 all hostile off-isolation ns 120 t on turn-on time from disable positive transient 30 negative transient mv 15 bw ls disable/enable switching transient nv/ hz ntsc degrees 0.43 dp differential phase error 0.07 r l = 1k ? r l = 150 ? ac & dynamic performance?single supply (MAX4190) (v cc = +5v, v ee = 0v, v in = 0v, a v = +2v/v; r f = r g = 1500 ? for r l = 1k ? and r f = r g = 750 ? for r l = 150 ? , t a = +25?, unless otherwise noted) pa/ hz 5 negative input positive input f = 10khz 4 i n input noise-current density 2 ns 35 t off turn-off time from disable
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable 10 ______________________________________________________________________________________ __________________________________________typical operating characteristics (v cc = +5v, v ee = -5v, t a = +25?, unless otherwise noted.) 9 0 1 1000 100 10 max4188 small-signal gain vs. frequency (dual supplies) 3 1 7 5 10 4 2 8 6 max4188toc01 frequency (mhz) gain (db) r f = r g = 390 ? r l = 100 ? r f = r g = 910k ? r l = 1k ? r f = r g = 560 ? r l = 150 ? v in = 20mv p-p a v = +2v/v 9 0 1 1000 100 10 max4188 small-signal gain vs. frequency (single supply) 3 1 7 5 10 4 2 8 6 max4188toc02 frequency (mhz) gain (db) r f = r g = 620 ? r l = 150 ? r f = r g = 1.1k ? r l = 1k ? r f = r g = 430 ? r l = 100 ? v ee = 0v v in = 20mv p-p a v = +2v/v 0.3 -0.6 1 1000 100 10 max4188 gain flatness vs. frequency (dual supplies) -0.3 -0.5 0.1 -0.1 0.4 -0.2 -0.4 0.2 0 max4188toc03 frequency (mhz) gain (db) v in = 20mv p-p a v = +2v/v r f = r g = 910 ? r l = 1k ? r f = r g = 620 ? r l = 150 ? r f = r g = 390 ? r l = 100 ? 3 -6 1 1000 100 10 max4189 small-signal gain vs. frequency (dual supplies) -3 -5 1 -1 4 -2 -4 2 0 max4188toc04 frequency (mhz) gain (db) v in = 20mv p-p a v = +1v/v r f = 1.1k ? r l = 150 ? r f = 1.6k ? r l = 1k ? r f = 680 ? r l = 100 ? 9 0 1 1000 100 10 max4188 large-signal gain vs. frequency (dual supplies) 3 1 7 5 10 4 2 8 6 max4188toc07 frequency (mhz) gain (db) r f = r g = 560 ? r l = 150 ? v in = 1v p-p a v = +2v/v r f = r g = 910 ? r l = 1k ? 3 -6 1 1000 100 10 max4189 small-signal gain vs. frequency (single supply) -3 -5 1 -1 4 -2 -4 2 0 max4188toc05 frequency (mhz) gain (db) v ee = 0 v in = 20mv p-p a v = +1v/v r f = 1.5k ? r l = 1k ? r f = 1.6k ? r l = 150 ? r f = 910 ? r l = 100 ? 0.1 -0.8 1 1000 100 10 max4189 gain flatness vs. frequency (dual supplies) -0.5 -0.7 -0.1 -0.3 0.2 -0.4 -0.6 0 -0.2 max4188toc06 frequency (mhz) gain (db) v in = 20mv p-p a v = +1v/v r f = 1.1k ? r l = 150 ? r f = 680 ? r l = 100 ? 9 0 1 1000 100 10 max4188 large-signal gain vs. frequency (single supply) 3 1 7 5 10 4 2 8 6 max4188toc08 frequency (mhz) gain (db) r f = r g = 620 ? r l = 150 ? r f = r g = 1.1k ? r l = 1k ? v ee = 0 v in = 1v p-p a v = +2v/v 2.0 -2.5 1 1000 100 10 max4188 small-signal gain matching vs. frequency -1.0 -2.0 1.0 0 2.5 -0.5 -1.5 1.5 0.5 max4188toc09 frequency (mhz) gain matching (db) ch2-ch3 v in = 20mv p-p r f = r g = 750 ? r l = 1k ? a v = +2v/v ch1-ch3 ch1-ch2
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable ______________________________________________________________________________________ 11 3 -6 1 1000 100 10 max4189 large-signal gain vs. frequency (dual supplies) -3 -5 1 -1 4 -2 -4 2 0 max4188toc10 frequency (mhz) gain (db) v in = 2v p-p a v = 1v/v r f = 1.6k ? r l = 1k ? r f = 1.1k ? r l = 150 ? 3 -6 1 1000 100 10 max4189 large-signal gain vs. frequency (single supply) -3 -5 1 -1 4 -2 -4 2 0 max4188toc11 frequency (mhz) gain (db) v ee = 0 v in = 2v p-p a v = +1v/v r f = 1.6k ? r l = 150 ? r f = 1.5k ? r l = 1k ? 2.0 -2.5 1 1000 100 10 max4189 small-signal gain matching vs. frequency -1.0 -2.0 1.0 0 2.5 -0.5 -1.5 1.5 0.5 max4188toc12 frequency (mhz) gain (db) v in = 2v p-p r f = 1.6k ? r l = 1k ? a v = +1v/v ch_1?h_3 ch_1?h_2 ch_3?h_2 -10 -100 0.1 100 10 1 max4188 harmonic distortion vs. frequency (dual supplies) -70 -90 -30 -50 0 -60 -80 -20 -40 max4188toc13 frequency (mhz) distortion (dbc) v out = 2v p-p 2nd (r l = 150 ? ) 3rd (r l = 150 ? ) 3rd (r l = 1k ? ) 2nd (r l = 1k ? ) -10 -100 0.1 100 10 1 max4189 harmonic distortion vs. frequency (dual supplies) -70 -90 -30 -50 0 -60 -80 -20 -40 max4188toc16 frequency (mhz) distortion (dbc) v out = 2v p-p 2nd (r l = 150 ? ) 3rd (r l = 150 ? ) 2nd (r l = 1k ? ) 3rd (r l = 1k ? ) -10 -100 0.1 100 10 1 max4188 harmonic distortion vs. frequency (single supply) -70 -90 -30 -50 0 -60 -80 -20 -40 max4188toc14 frequency (mhz) distortion (dbc) v out = 2v p-p 2nd (r l = 150 ? ) 3rd (r l = 150 ? ) 2nd (r l = 1k ? ) 3rd (r l = 1k ? ) -10 -80 1 1000 100 10 max4188 crosstalk vs. frequency (dual supplies) -70 -30 -50 0 -60 -20 -40 max4188toc15 frequency (mhz) crosstalk (dbc) v out = 2v p-p r l = 150 ? -10 -100 0.1 100 10 1 max4189 harmonic distortion vs. frequency (single supply) -70 -90 -30 -50 0 -60 -80 -20 -40 max4188toc17 frequency (mhz) distortion (dbc) v out = 2v p-p 2nd (r l = 150 ? ) 3rd (r l = 150 ? ) 2nd (r l = 1k ? ) 3rd (r l = 1k ? ) -10 -80 1 1000 100 10 max4189 crosstalk vs. frequency (dual supplies) -70 -30 -50 0 -60 -20 -40 max4188toc18 frequency (mhz) crosstalk (dbc) v out = 2v p-p r l = 150 ? ____________________________________t ypical operating characteristics (continued) (v cc = +5v, v ee = -5v, t a = +25?, unless otherwise noted.)
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable 12 ______________________________________________________________________________________ ____________________________________t ypical operating characteristics (continued) (v cc = +5v, v ee = -5v, t a = +25?, unless otherwise noted.) 3.4 3.2 2.8 2.4 2.0 1.6 1.4 100 1m 1k 10k 100k 10m 100m 1g input voltage-noise density vs. frequency 1.8 max4180 toc19 frequency (hz) 2.2 2.6 3.0 voltage-noise density (nv/ hz) 4 12 8 20 16 24 28 100 100k 1m 1k 10k 10m 100m 1g total voltage-noise density vs. frequency (input referred) max4188toc20 frequency (hz) total voltage-noise density (nv/ hz) v out v in 910k ? 910k ? max4188 12 0 100 50 150 250 200 300 350 0.02 0.1 -3db bandwidth vs. input amplitude max4188toc21 input amplitude (vp-p) -3db bandwidth (mhz) max4188 max4189 dual supplies: r l = 1k ? , a v = +2v/v, r f = r g = 910 ? for max4188; a v = +1v/v, r f = 1.6k ? for max4189 -10 -100 0.1 1000 100 10 1 power-supply rejection ratio vs. frequency -70 -90 -30 -50 0 -60 -80 -20 -40 max4188toc22 frequency (mhz) psrr (db) v cc (max4188) v cc (max4189) v ee (max4189) v ee (max4188) 0 0.4 0.2 1.0 0.8 0.6 1.2 1.4 1.8 1.6 2.0 -40 -20 0 20 40 60 80 input offset voltage (v os ) vs. temperature max4188toc25 temperature (?) v os (mv) 1k 0.1 0.1 1 10 100 1000 output impedance vs. frequency (dual supplies) 1 max4188-23 frequency (mhz) output impedance ( ? ) 10 100 max4188 max4189 r l = 1k ? , a v = +2v/v, r f = r g = 910 ? for max4188; a v = +1 v/v, r f = 1.6k ? for max4189 1.2 1.3 1.4 1.5 1.6 -40 20 -20 0 40 60 80 supply current per amplifier vs. temperature max4188toc24 temperature (?) supply current per amplifier (ma) v cc = 5v; v ee = 0 v cc = 5v; v ee = -5v 0 1 2 3 4 5 -40 20 -20 0 40 60 80 input bias current vs. temperature max4188toc26 temperature (?) input bias current ( a) i b - (positive input) i b - (negative input) 0.2 0.3 0.4 0.5 -40 20 -20 0 40 60 80 disabled supply current per amplifier vs. temperature max4188toc27 temperature (?) disabled supply current per amplifier (ma) v cc = ?.5v v cc = ?v
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable ______________________________________________________________________________________ 13 0.8 1.0 1.2 1.4 1.6 1.8 -40 20 -20 0 40 60 80 output voltage swing vs. temperature max4188toc28 temperature (?) (v cc -v oh ) and (v ol -v ee ) (mv) v ol - v ee ; r l = 150 ? v cc - v oh ; r l = 150 ? v ol - v ee ; r l = 1k ? v cc - v oh ; r l = 1k ? 0v out disable 2v 0v 4v max4188 enable/disable response max4188toc29 50ns/div a v = +2v/v, r f = r g = 910 ? , r l = 1k ? , v in = 1v 0v 2v/div a v = +1v/v, r l = 1k ? , r f = 1.6k ? , v ee = 0 v cc v out 0v 10v max4189 power-on response max4188toc30 200ns/div -50mv out in +50mv -25mv +25mv max4188 small-signal pulse response max4188toc31 10ns/div a v = +2v/v, r f = r g = 910 ? , r l = 1k ? -50mv out in +50mv -25mv +25mv max4188 small-signal pulse response (with c load ) max4188toc32 10ns/div a v = +2v/v, r f = r g = 910 ? , r l = 1k ? , c l = 47pf -2v out in +2v -1v +1v max4188 large-signal pulse response max4188toc33 10ns/div a v = +2v/v, r f = r g = 910 ? , r l = 1k ? ____________________________________t ypical operating characteristics (continued) (v cc = +5v, v ee = -5v, t a = +25?, unless otherwise noted.)
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable 14 ______________________________________________________________________________________ ____________________________________t ypical operating characteristics (continued) (v cc = +5v, v ee = -5v, t a = +25?, unless otherwise noted.) 20mv/div 0v disable out 0v 3v max4188 switching transient max4188toc37 100ns/div a v = +2v/v, r f = 910 ? , r l = 1k ? , v in = 0 100mv/div disable out 0v 3v max4189 switching transient max4188toc38 100ns/div a v = +1v/v, r f = 1.6k ? , r l = 1k ? , v in = 0 -95 1 1000 100 10 off-channel feedthrough vs. frequency (dual supplies) -75 -35 -55 -25 -65 -85 -45 max4188toc39 frequency (mhz) off-channel feedthrough (db) r l = 150 ? -50mv out in +50mv -50mv +50mv max4189 small-signal pulse response max4188toc34 10ns/div a v = +1v/v, r f = 1.1k ? , r l = 150 ? -50mv out in +50mv -50mv +50mv max4189 small-signal pulse response (with c load ) max4188toc35 10ns/div a v = +1v/v, r f = 1.6k ? , r l = 1k ? , c l = 47pf -2v out in +2v -2v +2v max4189 large-signal pulse response max4188toc36 10ns/div a v = +1v/v, r f = 1.1k ? , r l = 150 ?
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable ______________________________________________________________________________________ 15 pin descriptions 8 6 3 2 disable control input. amplifier is enabled when disable (v cc - 2v) and disabled when disable (v cc - 3v). amplifier output 4 amplifier noninverting input MAX4190 disable out in+ in- out2 amplifier inverting input 1, 5 amplifier 2 output in2- 14 in2+ v ee amplifier 2 inverting input in3+ 13 amplifier 2 noninverting input 12 in3- out3 negative power supply. connect v ee to -5v or to ground for single-supply operation. n.c. out1 in1- 7 11 amplifier 3 noninverting input in1+ 10 v cc amplifier 3 inverting input disable3 9 amplifier 3 output pin name disable2 8 disable1 no connection. not internally connected. 16 amplifier 1 output 15 7 14 13 amplifier 1 inverting input 12 6 amplifier 1 noninverting input 11 5 max4188/max4189 10 8, 9 7 positive power supply. connect v cc to +5v. 6 4 disable control input for amplifier 3. amplifier 3 is enabled when disable3 (v cc - 2v) and disabled when disable3 (v cc - 3v). 5 3 4 3 disable control input for amplifier 2. amplifier 2 is enabled when disable2 (v cc - 2v) and disabled when disable2 (v cc - 3v). 2 disable control input for amplifier 1. amplifier 1 is enabled when disable1 (v cc - 2v) and disabled when disable1 (v cc - 3v). 2 1 function 1 so/max so qsop detailed description the max4188/max4189/MAX4190 are very low-power, current-feedback amplifiers featuring bandwidths up to 250mhz, 0.1db gain flatness to 80mhz, and low differ- ential gain (0.03%) and phase (0.05? errors. these amplifiers achieve very high bandwidth-to-power ratios while maintaining low distortion, wide signal swing, and excellent load-driving capabilities. they are optimized for ?v supplies but are also fully specified for single +5v operation. consuming only 1.5ma per amplifier, these devices have ?5ma output current drive capabil- ity and achieve low distortion even while driving 150 ? loads. wide bandwidth, low power, low differential phase/gain error, and excellent gain flatness make the max4188 family ideal for use in portable video equipment such as video cameras, video switchers, and other battery- powered equipment. their two-stage design provides higher gain and lower distortion than conventional sin- gle-stage, current-feedback amplifiers. this feature, combined with a fast settling time, makes these devices suitable for buffering high-speed analog-to-digital con- verters. the m ax4188/max4189/MAX4190 have a high-speed, low-power disable mode that is activated by driving the amplifiers? disable input low. in the disable mode, the
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable 16 ______________________________________________________________________________________ amplifiers achieve very high isolation from input to output (65db at 10mhz), and the outputs are placed into a high- impedance state. these amplifiers achieve low switch- ing-transient glitches (<45mv p-p ) when switching between enable and disable modes. fast enable/disable times (120ns/35ns), along with high off-isolation and low switching transients, allow these devices to be used as high-performance, high-speed multiplexers. this is achieved by connecting the outputs of multiple amplifiers together and controlling the disable inputs to enable one amplifier and disable all others. the disabled ampli- fiers present a very light load (1? leakage current and 3.5pf capacitance) to the active amplifier? output. the feedback network impedance of all the disabled ampli- fiers must still be considered when calculating the total load on the active amplifier output. figure 1 shows an application circuit using the max4188 as a 3:1 video mul- tiplexer. the disable_ logic threshold is typically v cc - 2.5v, independent of v ee . for a single +5v supply or dual ?v supplies, the disable inputs are cmos-logic com- patible. the amplifiers default to the enabled mode if the disable pin is left unconnected. if the disable pin is left floating, take proper care to ensure that no high-frequency signals are coupled to this pin, as this may cause false triggering. applications information theory of operation the max4188/max4189/MAX4190 are current-feedback amplifiers, and their open-loop transfer function is expressed as a transimpedance, ? v out / ? i in , or t z . the frequency behavior of the open-loop transimpedance is similar to the open-loop gain of a voltage-mode feedback amplifier. that is, it has a large dc value and decreases at approximately 6db per octave. analyzing the follower with gain, as shown in figure 2, yields the following transfer function: v out / v in = g x [(t z (s) / t z (s) + g x (r in + r f )] where g = a vcl = 1 + (r f / r g ), and r in = 1/g m ? 300 ? . at low gains, g x r in < r f . therefore, the closed-loop bandwidth is essentially independent of closed-loop gain. similarly t z > r f at low frequencies, so that: v v out in ( / ) ==+ grr fg 1 v in r g r in t z r f +1 +1 v out max4188 max4189 MAX4190 figure 2. current-feedback amplifier amp1 6 7 5 560 ? 75 ? v in 1 560 ? 1.0 f 1.0 f 0.1 f 4 11 +5v -5v 0.1 f 87 ? amp2 13 14 12 9 10 disable2 disable3 disable1 560 ? 75 ? v in 2 560 ? v out 87 ? 75 ? 75 ? cable 8 123 560 ? 75 ? v in 3 560 ? 87 ? max4188 amp3 figure 1. high-speed 3:1 video multiplexer
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable ______________________________________________________________________________________ 17 v out r g r s v out = -(r f / r g ) (v in ) v in r f r o r t max4188 max4189 MAX4190 figure 3a. inverting gain configuration v out r g r s v out = [1+ (r f / r g )] v in v in r f r o r t max4188 max4189 MAX4190 figure 3b. noninverting gain configuration layout and power-supply bypassing as with all wideband amplifiers, a carefully laid out pcb and adequate power-supply bypassing are essential to realizing the optimum ac performance of max4188/ max4189/MAX4190. the pc board should have at least two layers. signal and power should be on one layer. a large low-impedance ground plane, as free of voids as possible, should be the other layer. with multi- layer boards, locate the ground plane on a layer that incorporates no signal or power traces. do not use wire-wrap boards or breadboards and sockets. wire-wrap boards are too inductive. breadboards and sockets are too capacitive. surface- mount components have lower parasitic inductance and capacitance, and are therefore preferable to through-hole components. keep lines as short as pos- sible to minimize parasitic inductance, and avoid 90 turns. round all corners. terminate all unused amplifier inputs to ground with a 100 ? or 150 ? resistor. the max4188/max4189/m ax4190 achieve a high degree of off-isolation (65db at 10mhz) and low crosstalk (-55db at 10mhz). the input and output sig- nal traces must be kept from overlapping to achieve high off-isolation. coupling between the signal traces of different channels will degrade crosstalk. the signal traces of each channel should be kept from overlap- ping with the signal traces of the other channels. adequate bypass capacitance at each supply is very important to optimize the high-frequency performance of these amplifiers. inadequate bypassing will also degrade crosstalk rejection, especially with heavier loads. use a 1? capacitor in parallel with a 0.01? to 0.1? capacitor between each supply pin and ground to achieve optimum performance. the bypass capacitors should be located as close to the device as possible. a 10? low-esr tantalum capacitor may be required to produce the best settling time and lowest distortion when large transient currents must be delivered to a load. choosing feedback and gain resistors the optimum value of the external-feedback (r f ) and gain-setting (r g ) resistors used with the max4188/ max4189/MAX4190 depends on the closed-loop gain and the application circuit? load. table 1 lists the opti- mum resistor values for some specific gain configura- tions. one-percent resistor values are preferred to maintain consistency over a wide range of production lots. figures 3a and 3b show the standard inverting and noninverting configurations. note that the nonin- verting circuit gain (figure 3b) is 1 plus the magnitude of the inverting closed-loop gain. otherwise, the two circuits are identical.
component/ bw component/ bw max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable 18 ______________________________________________________________________________________ max4188/max4189/MAX4190 dc and noise errors several major error sources must be considered in any op amp. these apply equally to the max4188/ max4189/MAX4190. off set-error terms are given by the equation below. voltage and current-noise errors are root-square summed and are therefore computed sep- arately. in figure 4, the total output offset voltage is determined by the following factors: the input offset voltage (v os ) times the closed-loop gain (1 = r f / r g ). the positive input bias current (i b+ ) times the source resistor (r s ) (usually 50 ? or 75 ? ), plus the negative input bias current (i b- ) times the parallel combination of r g and r f . in current-feedback amplifiers, the input bias currents at the in+ and in- terminals do not track each other and may have opposite polarity, so there is no benefit to matching the resistance at both inputs. the equation for the total dc error at the output is: v ir i r r v 1 r r out b s b f g os f g || = () + () () + [] + ? ? ? ? ? ? + ? table 1a. max4188 recommended component values table 1b. max4189 recommended component values table 1c. MAX4190 recommended component values a v = +10 v/v 470 51 30 r l = 1k ? a v = +5 v/v 470 120 70 r l = 1k ? a v = +2v/v a v = +10 (v/v) dual supplies 620 430 a v = +2v/v 430 130 r l = 100 ? 620 145 r l = 150 ? 470 120 70 470 a v = +5 (v/v) 1.1k 1.1k 185 r l = 1k ? r l = 1k ? 51 30 r l = 1k ? 390 390 145 r l = 100 ? 910 r f ( ? ) 910 200 560 component/ bw r g ( ? ) -3db bw (mhz) r l = 1k ? 560 160 r l = 150 ? a v = +10 v/v 470 51 30 r l = 1k ? a v = +5 v/v 470 120 70 r l = 1k ? a v = +2v/v a v = +10 (v/v) dual supplies 750 510 a v = +1v/v 510 125 r l = 100 ? 750 135 r l = 150 ? 470 120 70 470 a v = +5 (v/v) 1.5k 1.5k 165 r l = 1k ? r l = 1k ? 51 30 r l = 1k ? 510 510 135 r l = 100 ? 1.3k r f ( ? ) 1.3k 185 680 component/ bw r g ( ? ) -3db bw (mhz) r l = 1k ? 680 180 r l = 150 ? single supply single supply r g i b - i b + v out r f r s max4188 max4189 MAX4190 figure 4. output offset voltage r l = 150 ? 210 1.1k r l = 1k ? r l = 100 ? 185 680 a v = +1v/v -3db bw (mhz) r g ( ? ) r l = 1k ? 230 1.5k dual supplies r l = 150 ? 190 1.6k r l = 100 ? 165 910 single supply a v = +1v/v component/ bw 250 1.6k
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable ______________________________________________________________________________________ 19 video in video out 75 ? 75 ? cable 75 ? cable r f 560 ? r g 560 ? 75 ? 75 ? +5v -5v 0.1 f max4188 0.1 f figure 5. video line driver application r g r f r s r l c l v in max4188 max4189 MAX4190 figure 6a. using an isolation resistor (r s ) for high capacitive loads the total output-referred noise voltage is: the max4188/max4189/MAX4190 have a very low, 2nv/ hz noise voltage. the current noise at the positive input (i n+ ) is 4pa/ hz , and the current noise at the inverting input is 5pa/ hz . an example of the dc error calculations, using the max4188 typical data and typical operating circuit where r f = r g = 560k ? (r f || r g =280 ? ), and r s = 37.5 ? , gives the following: calculating the total output noise in a similar manner yields: with a 200mhz system bandwidth, this calculates to 68? rms (approximately 408? p-p , choosing the six- sigma value). video line driver the max4188/max4189/MAX4190 are well suited to drive coaxial transmission lines when the cable is termi- nated at both ends (figure 5). cable frequency response can cause variations in the signal? flatness. see table 1 for optimum r f and r g values. driving capacitive loads the max4188/max4189/m ax4190 are optimized for ac performance. reactive loads decrease phase mar- gin and may produce excessive ringing and oscillation. unlike most high-speed amplifiers, the max4188/ max4189/MAX4190 are tolerant of capacitive loads up to 50pf. capacitive loads greater than 50pf may cause ringing and oscillation. figure 6a shows a circuit that eliminates this problem. placing the small (usually 15 ? to 33 ? ) isolation resistor, r s , before the reactive load prevents ringing and oscillation. at higher capaci- tive loads, the interaction of the load capacitance and isolation resistor controls ac performance. figures 6b and 6c show the max4188 and max4189 frequency response with a 100pf capacitive load. note that in each case, gain peaking is substantially reduced when the 20 ? resistor is used to isolate the capacitive load from the amplifier output. e xx xx x ehz n out n out () () . ./ =+ () ? ? ? ? + ? ? ? ? + ? ? ? ? = ? ?? 11 410 375 510 280 210 48 12 2 12 2 9 2 nv v xx x x x v out out = ? ? ? ? + ? ? ? ? + ? ? ? ? ? ? ? ? ? ? + () = ?? ? 1 10 37 5 2 10 280 15 10 11 41 66 3 . . .mv e r r x ir ir r e n out f g ns nf g n () || =+ ? ? ? ? ? ? () [] + () [] + () + ? 1 22 2
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable 20 ______________________________________________________________________________________ ordering information (continued) pin configurations max4188/4189 transistor count: 336 MAX4190 transistor count: 112 substrate connected to v ee chip information 1 2 3 4 8 7 6 5 disable v cc out n.c. v ee in+ in- n.c. MAX4190 so/ max 14 13 12 11 10 9 8 1 2 3 4 5 6 7 out2 in2- in2+ v ee v cc disable3 disable2 disable1 top view max4188 max4189 in3+ in3- out3 out1 in1- in1+ so 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 disable1 out2 in2- in2+ v ee in3+ in3- out3 n.c. max4188 max4189 qsop disable2 disable3 in1- v cc in1+ out1 n.c. 5 4 3 -5 1 10 100 1000 -2 -3 -4 2 1 0 -1 frequency (mhz) gain (db) max4189 a v = +1v/v r f = 1.6k r l = 1k || 100pf v in = 20mv p-p r s = 0 ? r s = 20 ? r s = 33 ? figure 6c. normalized frequency response with 100pf capacitive load figure 6b. normalized frequency response with 100pf capacitive load 12 10 8 -10 1 10 100 1000 -2 -4 -8 6 4 2 0 frequency (mhz) gain (db) max4188/MAX4190 a v = +2v/v r f = r g = 910 ? r l = 1k || 100pf v in = 20mv p-p r s = 0 ? r s = 20 ? r s = 33 ? part temp range pin- package pkg code max4189 esd+ -40? to +85? 14 so s14-1 max4189eee+ -40? to +85? 16 qsop e16-1 MAX4190 esa+ -40? to +85? 8 so s8-2 MAX4190eua+t -40? to +85? 8 ?ax-8 u8-1 + denotes lead-free package.
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable ______________________________________________________________________________________ 21 package information (the package drawing(s) in this data sheet may not reflect the most current specifications. for the latest package outline info rmation go to www.maxim-ic.com/packages .) soicn .eps package outline, .150" soic 1 1 21-0041 b rev. document control no. approval proprietary information title: top view front view max 0.010 0.069 0.019 0.157 0.010 inches 0.150 0.007 e c dim 0.014 0.004 b a1 min 0.053 a 0.19 3.80 4.00 0.25 millimeters 0.10 0.35 1.35 min 0.49 0.25 max 1.75 0.050 0.016 l 0.40 1.27 0.394 0.386 d d min dim d inches max 9.80 10.00 millimeters min max 16 ac 0.337 0.344 ab 8.75 8.55 14 0.189 0.197 aa 5.00 4.80 8 n ms012 n side view h 0.244 0.228 5.80 6.20 e 0.050 bsc 1.27 bsc c h e e b a1 a d 0 -8 l 1 variations:
max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable 22 ______________________________________________________________________________________ package information (continued) (the package drawing(s) in this data sheet may not reflect the most current specifications. for the latest package outline info rmation go to www.maxim-ic.com/packages .) qsop.eps f 1 1 21-0055 package outline, qsop .150", .025" lead pitch
maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim product. no circu it patent licenses are implied. maxim reserves the right to change the circuitry and specifications without notice at any time. maxim integrated products, 120 san gabriel drive, sunnyvale, ca 94086 408-737-7600 ____________________ 23 2007 maxim integrated products is a registered trademark of maxim integrated products, inc. max4188/max4189/MAX4190 single/triple, low-glitch, 250mhz, current- feedback amplifiers with high-speed disable maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim product. no circu it patent licenses are implied. maxim reserves the right to change the circuitry and specifications without notice at any time. maxim integrated products, 120 san gabriel drive, sunnyvale, ca 94086 408-737-7600 ____________________ 23 2007 maxim integrated products is a registered trademark of maxim integrated products, inc. revision history pages changed at rev 1: 1?2, 15?7, 19?3 package information (continued) (the package drawing(s) in this data sheet may not reflect the most current specifications. for the latest package outline info rmation go to www.maxim-ic.com/packages .) 8lumaxd.eps package outline, 8l umax/usop 1 1 21-0036 j rev. document control no. approval proprietary information title: max 0.043 0.006 0.014 0.120 0.120 0.198 0.026 0.007 0.037 0.0207 bsc 0.0256 bsc a2 a1 c e b a l front view side view e h 0.60.1 0.60.1 ?0.500.1 1 top view d 8 a2 0.030 bottom view 1 6 s b l h e d e c 0 0.010 0.116 0.116 0.188 0.016 0.005 8 4x s inches - a1 a min 0.002 0.95 0.75 0.5250 bsc 0.25 0.36 2.95 3.05 2.95 3.05 4.78 0.41 0.65 bsc 5.03 0.66 6 0 0.13 0.18 max min millimeters - 1.10 0.05 0.15 dim


▲Up To Search▲   

 
Price & Availability of MAX4190

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X